Linear codes using skew polynomials with automorphisms and derivations

نویسندگان

  • Delphine Boucher
  • Felix Ulmer
چکیده

In this work the definition of codes as modules over skew polynomial rings of automorphism type is generalized to skew polynomial rings, whose multiplication is defined using an automorphism and a derivation. This produces a more general class of codes which, in some cases, produce better distance bounds than module skew codes constructed only with an automorphism. Extending the approach of Gabidulin codes, we introduce new notions of evaluation of skew polynomials with derivations and the corresponding evaluation codes. We propose several approaches to generalize Reed-Solomon and BCH codes to module skew codes and for two classes we show that the dual of such a Reed-Solomon type skew code is an evaluation skew code. We generalize a decoding algorithm due to Gabidulin for the rank metric and derive families of MDS and MRD codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring

Reed-Solomon codes and Gabidulin codes have maximum Hamming distance and maximum rank distance, respectively. A general construction using skew polynomials, called skew Reed-Solomon codes, has already been introduced in the literature. In this work, we introduce a linearized version of such codes, called linearized Reed-Solomon codes. We prove that they have maximum sum-rank distance. Such dist...

متن کامل

A note on linear codes and nonassociative algebras obtained from skew-polynomial rings

Different approaches to construct linear codes using skew polynomials can be unified by using the nonassociative algebras built from skew-polynomial rings by Petit.

متن کامل

Rank equivalent and rank degenerate skew cyclic codes

Two skew cyclic codes can be equivalent for the Hamming metric only if they have the same length, and only the zero code is degenerate. The situation is completely different for the rank metric, where lengths of codes correspond to the number of outgoing links from the source when applying the code on a network. We study rank equivalences between skew cyclic codes of different lengths and, with...

متن کامل

$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})$-Linear Skew Constacyclic Codes

In this paper, we study skew constacyclic codes over the ring ZqR where R = Zq + uZq, q = p s for a prime p and u2 = 0. We give the definition of these codes as subsets of the ring ZqR . Some structural properties of the skew polynomial ring R[x, θ] are discussed, where θ is an automorphism of R. We describe the generator polynomials of skew constacyclic codes over R and ZqR. Using Gray images ...

متن کامل

Skew Derivations and Deformations of Algebras

We obtain deformations of a crossed product of a polynomial algebra with a group, under some conditions, from universal deformation formulas. These formulas arise from actions of Hopf algebras generated by automorphisms and skew derivations. They are universal in the sense that they apply to deform all algebras with such Hopf algebra actions, and we give one additional example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2014